您好,欢迎来到一带一路数据库!

全库
全文
  • 全文
  • 标题
  • 所属丛书
  • 作者/机构
  • 关键词
  • 主题词
  • 摘要
高级检索

您好,欢迎来到一带一路数据库!

AI驱动的个性化学习路径推荐研究(2024)

作者:吴曦 所属图书:全球信息社会发展报告(2024) 图书作者:丁波涛 夏蓓丽 范佳佳 陈隽 出版时间:2024年11月 所属丛书:
报告字数:18490字 报告页数:24页

文章摘要:本研究探讨了AI驱动的个性化学习路径推荐系统的设计与应用。现代教育中,个性化学习已成为提升学习效果和学生满意度的关键因素。随着人工智能技术,尤其是大模型、机器学习和深度学习算法的发展,个性化学习路径推荐系统能够根据学生的学习行为、成绩和个人兴趣数据,自动生成最适合其学习进度的学习路径。本研究构建了一个基于数字孪生技术的学习者模型,结合多种现代AI技术,如GPT-3.5及其后续版本的语言模型和深度学习算法,实现个性化推荐。结果表明,该系统在提升学... 展开

文章摘要:本研究探讨了AI驱动的个性化学习路径推荐系统的设计与应用。现代教育中,个性化学习已成为提升学习效果和学生满意度的关键因素。随着人工智能技术,尤其是大模型、机器学习和深度学习算法的发展,个性化学习路径推荐系统能够根据学生的学习行为、成绩和个人兴趣数据,自动生成最适合其学习进度的学习路径。本研究构建了一个基于数字孪生技术的学习者模型,结合多种现代AI技术,如GPT-3.5及其后续版本的语言模型和深度学习算法,实现个性化推荐。结果表明,该系统在提升学习效果、用户满意度,以及系统响应时间和资源消耗方面表现优异,但仍面临数据隐私、安全性和模型可解释性等挑战,未来需继续优化算法,提升系统的可解释性和多模态数据融合能力。

收起

Abstract:This study explores the design and application of an AI-driven personalized learning path recommendation system. In modern education,personalized learning has become a key factor in enhancing learning outcomes and student satisfaction. With the advancement of artificial intelligence technologies,especially large models,machine learning,and deep learning algorithms,personalized learning path recommendation systems can automaticall... 展开

Abstract:This study explores the design and application of an AI-driven personalized learning path recommendation system. In modern education,personalized learning has become a key factor in enhancing learning outcomes and student satisfaction. With the advancement of artificial intelligence technologies,especially large models,machine learning,and deep learning algorithms,personalized learning path recommendation systems can automatically generate the most suitable learning paths based on students’ learning behavior,performance,and personal interest data. This research constructs a learner model based on digital twin technology,integrating various modern AI technologies,such as the language model GPT-3.5 and its subsequent versions,as well as deep learning algorithms,to achieve personalized recommendations. The experimental results show that the system performs excellently in improving learning outcomes,user satisfaction,and in terms of system response time and resource consumption. However,the study also highlights challenges related to data privacy,security,and model interpretability. Future work will focus on optimizing algorithms to improve system interpretability and multimodal data integration capabilities.

收起

作者简介

吴曦:吴曦,上海社会科学院新闻研究所高级工程师,研究方向为自然语言处理、信息化。

文章目录